Ohm's Law Problems

- 1. A circuit has a 12 V battery and a $400\,\Omega$ resistor. Calculate the current through the resistor.
- 2. If you want 25 mA of current through a circuit powered by a 9 V battery, what resistance should you choose?
- 3. A battery is 6 V and the circuit has a 220Ω resistor. What is the current through the resistor?

Watt's Law (Power Equation) Problems

- 1. A device operates at 5 V and draws 0.5 A. What is its power consumption in watts?
- 2. A robot motor uses 2.5 W at a supply voltage of 10 V. What is the current?
- 3. If an LED draws 0.03 A at 3 V, what is its power usage?

Combination Problems (Ohm's Law and Power)

- 1. A 24 V supply powers a resistor so that the circuit draws 0.1 A. Find the resistor value and power consumed.
- 2. You have a 15 V supply and a 150 Ω resistor. Calculate the current and power.

Python Practice

Write Python code to:

- (1) Accept user input for voltage and resistance, and print the current using Ohm's Law.
- (2) Accept user input for voltage and current, and print the power using Watt's Law.
- (3) Calculate the current through a resistor, given voltage and resistance, using user inputs.

Concept Questions

- 1. What does voltage do in a circuit?
- 2. What is resistance, and what is its unit?
- 3. Define electric current and state its unit.
- 4. What is the relationship between voltage, current, and resistance?
- 5. What does electrical power measure?

Answer Key

Ohm's Law Answers

- 1. $I = \frac{12}{400} = 0.03 A$
- 2. $R = \frac{9}{0.025} = 360 \,\Omega$
- 3. $I = \frac{6}{220} \approx 0.027 A = 27 \, mA$

Watt's Law Answers

- 1. $P = 5 \times 0.5 = 2.5 W$
- 2. $I = \frac{2.5}{10} = 0.25 A$
- 3. $P = 3 \times 0.03 = 0.09 W$

Combination Problem Answers

- 1. $R = \frac{24}{0.1} = 240 \,\Omega$, $P = 24 \times 0.1 = 2.4 \,W$
- 2. $I = \frac{15}{150} = 0.1 A$, $P = 15 \times 0.1 = 1.5 W$

Concept Answers

- 1. Voltage pushes current through the circuit; it is the driving force.
- 2. Resistance opposes current; its unit is Ω .
- 3. Electric current is the flow of charge; its unit is Ampere (A).
- 4. $V = I \times R$.
- 5. Electrical power is the rate at which energy is used or converted, measured in Watts (W).