Loops and Basic Data Structures in Python

1. Loops in Python

Loops allow us to repeat instructions multiple times.

For Loops

A for loop iterates over items in a sequence:

for i in range(5): # range(5) = 0,1,2,3,4
print (, 1)

for i in range(5, 11): # range(5, 11) = 5,6,7,8,9,10
print(, 1)

While Loops

A while loop repeats while a condition is true:

count = 0

while count < 5:
print (, count)
count += 1

Why doesn’t this count to 57

Control Keywords

e break exits a loop early.

e continue skips the rest of the current iteration.

for i in range (10):
if i ==
break
if i % 2 ==
continue
print (i)

Exercises (Loops)

1. Print all the odd numbers between 1 and 9.

for i in range(1,10):
if i % 2 ==
print (i)

2. Use a while loop to print numbers from 10 down to 1.

n = 10

while n > O:
print (n)
n -=1

2. Data Structures

Lists

Ordered, mutable (changeable) sequences:

numbers = [1, 2, 3]
numbers.append (4)
print (numbers [0]) # 1

Indexing in Python begins with 0. In the list letters = [’a’, ’b’, ’c’], ’a’ isindex 0, b’ is
index 1, ’c’ is index 2. Use square brackets to reference them. print(letters([1]) will print *b’.

List Methods

Lists have built-in methods that let you modify or inspect them:

e append(item): Adds item to the end.

e remove(item): Removes the first occurrence of item.
e insert(index, item): Inserts item at index.

e pop(): Removes and returns the last item.

e sort(): Sorts the list in place.

e reverse(): Reverses the list in place.

numbers = [2, 1, 2]

numbers.append (3) # [2, 1, 2, 3]

numbers .remove (2) # [1, 2, 3] (removes the first number 2 found)
numbers.insert (1, 99) # [1, 99, 2, 3]

last = numbers.pop () # last = 3, numbers = [1, 99, 2]

numbers.sort () # [1, 2, 99]

numbers.reverse () # [99, 2, 1]

Tuples

Ordered, immutable (unchangable) sequences:

point = (2, 5)
print (point [1]) # 5

Tuple Methods

Tuples support:

e count(item): Number of times item appears.

e index(item): Position of first occurrence of item.

t = (1, 4, 1, 5
print (t.count (1)) # 2
print (t.index (5)) # 3

Tuples cannot be changed after creation.

Dictionaries

Key-value pairs:

person = { : , ¢ 16}
print (person[»

Dictionary Methods

Useful methods include:

e keys(): Gives all the keys.
e values(): Gives all the values.

e items(): Gives (key, value) pairs.

o get(key, default): Gets value or default.
e pop(key): Removes key, returns its value.

e update(other): Adds pairs from another dictionary.

scores = { 90, : 84}
print (scores.keys ()) # dict_keys([’Sam’, ’Alex’])
print (scores.get (, 0)) # 0

scores .update ({ 75})

Sets

Unordered collections of unique elements, each item can only be in the set once:

unique_nums = {1, 2, 3%}
print (unique_nums) # {1,

2,

2, 3%}

Set Methods
Important methods:

e add(item): Adds an item.

e remove(item): Removes item (error if absent).

e discard(item): Removes if present, no error if not.
e pop(): Removes and returns a random element.

e union(other): Combines sets.

e intersection(other): Common elements.

e difference(other): Elements not in other.

primes = {2, 3}
primes.add(5)

primes.remove (2)

primes2 = {3, 5, 7}
print (primes.intersection(primes2)) # {3, 5}
print (primes.union(primes2)) # {3, 5, 7}

Exercises (Data Structures)

1. Create a list of your three favorite foods and print the second item.

foods = [) ,]
print (foods [1])

2. Make a dictionary for a book with keys "title" and "author". Print the author’s name.

book = { : , : }
print (book [»

3. Indexing and Slicing

Indexing lets us access individual elements inside lists, tuples, and strings.

Lists and Tuples

Indexing starts at 0 in Python:

numbers = [10, 20, 30, 40, 50]
print (numbers [0]) # First item: 10
print (numbers[-1]) # Last item: 50

Tuples are indexed the same way:

point = (3, 7)
print (point [0]) # 3

Slicing

You can take parts of a list (or string) using slicing:

nums = [0, 1, 2, 3, 4, 5]
print (nums [1:4]) # Items at indexes 1,2,3 => [1,2,3]

print (nums [:3]) # First 3 items: [0,1,2]
print (nums [3:]) # From index 3 to end: [3,4,5]
Dictionaries

Dictionaries are not accessed by position, but by key:

person = { : s : 16}
print (person|[1) # Access Dby key

Exercises (Indexing)

1. Given letters = ["a","b","c","d","e"], print the third element.

letters = [, , , > 1
print (letters [2]) # c

2. From the list nums = [5,10,15,20,25], slice out [10,15,20].

nums = [5,10,15,20,25]
print (nums [1:4])

4. Combining Loops and Data Structures

Looping Through Lists

fruits = [s s]
for fruit in fruits:
print(, fruit)

Looping Through Dictionaries

scores = { : 85, 72, : 90}
for name, score in scores.items():
print (name, , score)

Looping With Sets and Tuples

numbers = {1, 2, 3, 4, 5}
for n in numbers:
print (n*n)

point = (3, 4)
for coord in point:
print (coord)

Exercises (Combining)

1. Print each food in your foods list with a message like ”I want to eat pizza”.

foods = [, >]
for food in foods:
print (, food)

2. Given a dictionary of library books and counts, print the title of every book with more than 2
copies.

library = { : 4, 1, . 3%}
for title, count in library.items():
if count > 2:
print (title)

5. Challenge Problems (No Solutions)

1. Write a program that goes through a list of numbers and creates a new list of only the even
numbers. (Modulus

2. Count how many times each letter appears in a word. (Hint: every string is a list of letters)
3. Given a list of student scores, print the average score. (Dictionary)

4. Write a program that prints out all unique words from a sentence. (Set)

Expanded Study: Topics for Learning More About Data Structures

If you’d like to increase your knowledge, explore these concepts:

e List comprehensions for building lists quickly

Nested data structures (lists of lists, etc.)

Advanced set operations: issubset, issuperset, symmetric_difference

The collections module (defaultdict, Counter, OrderedDict)

Differences between mutable and immutable types

Designing your own data structure for a project

Check the Python documentation: Python’s Data Structures Tutorial

Next Lesson Preview: Functions, Libraries, and Practical Applica-
tions

Next time, we’ll expand your Python toolbox:

e Defining and calling functions
e Passing parameters and using return values
e Importing and using external libraries (math, time, and more)

e Combining all concepts to build basic robotic program structures

Keep practicing—the basics make the next step easier and more creative!

https://docs.python.org/3/tutorial/datastructures.html

