
Loops and Basic Data Structures in Python

1. Loops in Python

Loops allow us to repeat instructions multiple times.

For Loops

A for loop iterates over items in a sequence:

for i in range (5): # range (5) = 0,1,2,3,4

print("Number:", i)

for i in range(5, 11): # range(5, 11) = 5,6,7,8,9,10

print("Number:", i)

While Loops

A while loop repeats while a condition is true:

count = 0

while count < 5:

print("Count is:", count)

count += 1

Why doesn’t this count to 5?

Control Keywords

� break exits a loop early.

� continue skips the rest of the current iteration.

for i in range (10):

if i == 5:

break

if i % 2 == 0:

continue

print(i)

1



Exercises (Loops)

1. Print all the odd numbers between 1 and 9.

for i in range (1,10):

if i % 2 == 1:

print(i)

2. Use a while loop to print numbers from 10 down to 1.

n = 10

while n > 0:

print(n)

n -= 1

—

2. Data Structures

Lists

Ordered, mutable (changeable) sequences:

numbers = [1, 2, 3]

numbers.append (4)

print(numbers [0]) # 1

Indexing in Python begins with 0. In the list letters = [’a’, ’b’, ’c’], ’a’ is index 0, ’b’ is
index 1, ’c’ is index 2. Use square brackets to reference them. print(letters[1]) will print ’b’.

List Methods

Lists have built-in methods that let you modify or inspect them:

� append(item): Adds item to the end.

� remove(item): Removes the first occurrence of item.

� insert(index, item): Inserts item at index.

� pop(): Removes and returns the last item.

� sort(): Sorts the list in place.

� reverse(): Reverses the list in place.

2



numbers = [2, 1, 2]

numbers.append (3) # [2, 1, 2, 3]

numbers.remove (2) # [1, 2, 3] (removes the first number 2 found)

numbers.insert(1, 99) # [1, 99, 2, 3]

last = numbers.pop() # last = 3, numbers = [1, 99, 2]

numbers.sort() # [1, 2, 99]

numbers.reverse () # [99, 2, 1]

Tuples

Ordered, immutable (unchangable) sequences:

point = (2, 5)

print(point [1]) # 5

Tuple Methods

Tuples support:

� count(item): Number of times item appears.

� index(item): Position of first occurrence of item.

t = (1, 4, 1, 5)

print(t.count (1)) # 2

print(t.index (5)) # 3

Tuples cannot be changed after creation.

Dictionaries

Key-value pairs:

person = {"name": "Sam", "age": 16}

print(person["name"])

Dictionary Methods

Useful methods include:

� keys(): Gives all the keys.

� values(): Gives all the values.

� items(): Gives (key, value) pairs.

3



� get(key, default): Gets value or default.

� pop(key): Removes key, returns its value.

� update(other): Adds pairs from another dictionary.

scores = {"Sam": 90, "Alex": 84}

print(scores.keys()) # dict_keys([’Sam ’, ’Alex ’])

print(scores.get("Bob", 0)) # 0

scores.update ({"Bob": 75})

Sets

Unordered collections of unique elements, each item can only be in the set once:

unique_nums = {1, 2, 2, 3}

print(unique_nums) # {1, 2, 3}

Set Methods

Important methods:

� add(item): Adds an item.

� remove(item): Removes item (error if absent).

� discard(item): Removes if present, no error if not.

� pop(): Removes and returns a random element.

� union(other): Combines sets.

� intersection(other): Common elements.

� difference(other): Elements not in other.

primes = {2, 3}

primes.add (5)

primes.remove (2)

primes2 = {3, 5, 7}

print(primes.intersection(primes2)) # {3, 5}

print(primes.union(primes2)) # {3, 5, 7}

Exercises (Data Structures)

1. Create a list of your three favorite foods and print the second item.

foods = ["pizza", "sushi", "tacos"]

print(foods [1])

4



2. Make a dictionary for a book with keys "title" and "author". Print the author’s name.

book = {"title": "1984", "author": "Orwell"}

print(book["author"])

—

3. Indexing and Slicing

Indexing lets us access individual elements inside lists, tuples, and strings.

Lists and Tuples

Indexing starts at 0 in Python:

numbers = [10, 20, 30, 40, 50]

print(numbers [0]) # First item: 10

print(numbers [-1]) # Last item: 50

Tuples are indexed the same way:

point = (3, 7)

print(point [0]) # 3

Slicing

You can take parts of a list (or string) using slicing:

nums = [0, 1, 2, 3, 4, 5]

print(nums [1:4]) # Items at indexes 1,2,3 => [1,2,3]

print(nums [:3]) # First 3 items: [0,1,2]

print(nums [3:]) # From index 3 to end: [3,4,5]

Dictionaries

Dictionaries are not accessed by position, but by key:

person = {"name": "Sam", "age": 16}

print(person["name"]) # Access by key

Exercises (Indexing)

1. Given letters = ["a","b","c","d","e"], print the third element.

letters = ["a","b","c","d","e"]

print(letters [2]) # c

5



2. From the list nums = [5,10,15,20,25], slice out [10,15,20].

nums = [5 ,10 ,15 ,20 ,25]

print(nums [1:4])

—

4. Combining Loops and Data Structures

Looping Through Lists

fruits = ["apple", "banana", "cherry"]

for fruit in fruits:

print("I like", fruit)

Looping Through Dictionaries

scores = {"Alice": 85, "Bob": 72, "Cara": 90}

for name , score in scores.items():

print(name , "scored", score)

Looping With Sets and Tuples

numbers = {1, 2, 3, 4, 5}

for n in numbers:

print(n*n)

point = (3, 4)

for coord in point:

print(coord)

Exercises (Combining)

1. Print each food in your foods list with a message like ”I want to eat pizza”.

foods = ["pizza", "sushi", "tacos"]

for food in foods:

print("I want to eat", food)

2. Given a dictionary of library books and counts, print the title of every book with more than 2
copies.

library = {"1984": 4, "Dune": 1, "Hobbit": 3}

for title , count in library.items():

if count > 2:

print(title)

—

6



5. Challenge Problems (No Solutions)

1. Write a program that goes through a list of numbers and creates a new list of only the even
numbers. (Modulus

2. Count how many times each letter appears in a word. (Hint: every string is a list of letters)

3. Given a list of student scores, print the average score. (Dictionary)

4. Write a program that prints out all unique words from a sentence. (Set)

—

Expanded Study: Topics for Learning More About Data Structures

If you’d like to increase your knowledge, explore these concepts:

� List comprehensions for building lists quickly

� Nested data structures (lists of lists, etc.)

� Advanced set operations: issubset, issuperset, symmetric difference

� The collections module (defaultdict, Counter, OrderedDict)

� Differences between mutable and immutable types

� Designing your own data structure for a project

Check the Python documentation: Python’s Data Structures Tutorial

—

Next Lesson Preview: Functions, Libraries, and Practical Applica-
tions

Next time, we’ll expand your Python toolbox:

� Defining and calling functions

� Passing parameters and using return values

� Importing and using external libraries (math, time, and more)

� Combining all concepts to build basic robotic program structures

Keep practicing—the basics make the next step easier and more creative!

7

https://docs.python.org/3/tutorial/datastructures.html

